

7th INTERNATIONAL CONGRESS ON COMBUSTION ENGINES

POLISH SCIENTIFIC SOCIETY OF COMBUSTION ENGINES 27th – 29th June 2017 Poznan, POLAND

PTNSS-2017-032

Innovative changes in the cylinder liners surface shaping methods

Józef Gruszka

Abstract: The main directions of changes in new internal combustion engine designs are determined not only by legislation on the toxic components emission in the exhaust gases, but also by the changes resulting from technological development, which are the results of research and development activities. One of the basic systems that has undergone intensive development recently is the piston-rings-cylinder (PRC) node. This article contains an original analysis of the direction of changes in cylinder surface shaping in terms of the cylinder's main functional features in the PRC system (the casting material and the opening surface topography after the finishing process). The results of the research on cast iron materials for cylinder liner castings with a strength of R_m> 300 MPa were analyzed based on the centrifugal casting method and their finishing stage in the finishing process meeting the criteria for reduction of oil consumption and particle emissions for new HDD type engine designs. The author also points to innovations in surface structure metrology based on new 3D optical measurement methods and the quality rating method by Mercedes company.

Key words: cylinder liner, development, new technologies

1. Directions of changes in cylinder liners casting shape

Research and analysis of new cast iron groups based on available literature data, cylinder liner manufacturers findings (FM, GKN and MAHLE) as well as own research have shown that new construction materials in order to meet the increased requirements of tensile strength limit (Rm> 300 MPa) belong to the cast iron group: - with flake graphite (EN-GJL 300),- with vermicular graphite (EN-GJV 450), -cast iron with ball graphite (EN-GJS 600), whose basic properties are listed in Table 1 and 2 against the background materials used for cylinder blocks and cylinder liner castings

2. The directions of changes in shaping the topology of the liner opening surface after the finishing process

In the new solutions, the formation of the cylindrical surface topography is a trend towards the method of multi-step finishing, taking into account the dependence of the Rk parameter on the exhaust emission standard, as illustrated in the data presented in figure 2.

Table 1. Comparison of basic properties of cast iron for cylinder blocks and cylinder liners

		Material property									
Properties	Unit	A 390 EN-GJ 250		EN-GJL 300	EN-GJV 450	EN-GJS 600	42CrMo				
Tensile strength Rm	MPa	275	250 300-375		450-525 > 600		900-1150				
Elastic modulus Eo	GPa	80	105 115		145 170		210				
Elongation at break point Amin	%	1	1,5	1,5	1,0	0,5	(10)				
Fatigue strength (20° – 225°C)	MPa	100-35	110-100	125-120	210-205	-	(280)				
Thermal conductivity λ (20°C)	W·m·1K·1	130	33	-34	30-37	28-35	(50)				
Thermal expansion α (20°-200°C)	10 ⁻⁶ K ⁻¹	18	12	2,5	12,3	12	11-12				
Density	g/cm ³	2,6-2,7		7,1	-7,3	7,7					
Hardness	HB	110-150	260-310		260-310	280-330	240				
Structure				Marten- sitic							
Graphite form			Fla	ke	Vermicular	Ball					
Technological process		Casting		Centrifu	gal casting	Forging					
Material availability		Base mat produc	erials in ction	Developi	ng material	materials partly in production					

Table 2 Comparison of cast iron properties tested

Type of material	Chemical composition [%]												Mechanical properties		
	С	Si	Mn	P	S	Cr	Mo	Ni	Cu	V	Ti	N	Mg	Rm	TIDAL
	Image of metallic matrix formation													[MPa]	HBW
-	23	0 3 2	1 0 5	0.57	0.0	6 0 40	0.1/	0.11						355	344

Fig. 2. Cylinder liners surface roughness parameters test results according to the purpose of the liner for the VOLVO HDEP type of engine.

3. New methods of optical 3D measurements (WLI) using the MBN 37800 standard

The use of white light inferometry (WLI) is new in surface metrology, as illustrated in the data presented in figure 3.

Fig. 3. Honing structure according to MBN 37800-1. From left (a) to right (d): original topography after the F-operator application, raster image, contact surface (white), undesired surface structures on the sheet metal part (white).

4. Conclusions

- Compliance with the new design requirements of the type HDD/HDEP internal combustion engines (increase of maximum combustion pressures exceeding $P_{\text{max}} = 23-25$ MPa) requires the construction of cylinder liners that can meet the strict criteria of material strength ($R_m > 300$ MPa) and the surface topography to meet the requirements of standards related to reduction of oil consumption and particulate emissions.
- New methods of optical 3D measurements (WLI) using the MBN 37800-1 standard will require the implementation of research methodology and international benchmarking and comparative studies with the round-robin method based on the instrument used (Talysurf CCI 600 or WLICyI-S).